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The solution for a multifield material subjected to temperature loading in a circular region is presented in an 
explicit analytical form. The study concerns the steady – state thermal loading infinite region (heated embedded 
inclusion), half – space region and two – constituent magneto – electro – thermo – elastic material region. The 
new mono – harmonic potential functions, obtained by the author, are used in the analysis of punch problem. The 
more interested case in which the contact region is annular is analyzed. By using the methods of triple integral 
equations and series solution technique the solution for an indentured multifield substrate over an annular contact 
region is given. The sensitivity analysis of obtained indentation parameters shows some interesting points. In 
particular, it shows that the increasing of the applied electric and magnetic potentials reduces the indentation 
depth in multifield materials. 
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1. Introduction 
 

 Solutions for various cases of contact problems can be found in the books by Gladwell (1980), 
Johnson (1985), Hills et al. (1993), Raous et al. (1995) and Rogowski (2006; 2006). However, in these books 
elastic fields themselves are considered and distinctive mathematical methods are used and elaborated. 
However, there is no parallel work in the domain of magneto – electro – thermo – elasticity. In the recent 
paper by Chen et al. (2010) the authors obtained the coupled fields for indentation of a multiferroic 
composite half – space for three common indenters: flat – ended, conical and spherical. The complete contact 
problem is considered under the assumption of circular contact region. Various important discussions related 
to indentation of piezoelectric materials, e.g., on the piezoresponse force microscopy (Kalinin et al., 2004) 
can be directly borrowed and applied to piezomagnetic materials. It is reasonable to assume that the 
extension of the findings to multifield composite materials is valid. The effective solution to the contact 
problem of multifield foundation and truncated conical punch or punch with a concave base was obtained 
and published recently by the author (Rogowski and Kaliński, 2012; Rogowski, 2012). In this paper, five 
potential mono – harmonic functions, obtained by the author, are utilized to solve the punch problem in 
which the contact region is always annular. The outer circumference of the annulus coincides with the edge 
of the punch. The inner circumference will shrink with an increasing load. The inner radius is not known a 
priori and is obtained from the conditions of equal thermal displacement and indentation mechanical depth of 
the punch on this circumference. On this boundary the phenomenon of adhesive contact is observed. The 
problem is solved by triple integral equations technique. The relationships between the force, electric charge, 
magnetic flux, temperature, indentation depth of the punch and electric and magnetic potentials on the 
boundary are derived. 
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2. Axisymmetric solutions of a multifield body 
 

 The generalized multifield solution considered here is independent of the variable   in the 
cylindrical coordinate system  , ,r z . Therefore, the mechanical displacement ru  and zu , the electric 

potential   and magnetic potential  , the mechanical stresses r ,  , z  and rz , the electric 

displacements rD  and zD , the magnetic inductions rB  and zB  can be generally expressed as (Rogowski, 
2014). 
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are the components of electric and magnetic field vectors. 
 In the fundamental solution  ,i ir z  are the harmonic functions of the variables r  and zz ii  , 

that is 
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 The temperature in a steady – state and uncoupled thermoelastic problem is governed by 
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where r , z  are the heat conduction coefficients in unit W/Km and T  is described by  ,0 0r z  as follows 
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          The quantities i   , , ,i 1 2 3 4  are eigenvalues of multifield material defined as the roots of equation 
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where a, b, c, d and e  are given in the Appendix A by Eqs A1. The roots of Eq.(2.6) are presented by 
formulae A4. The other material parameters are given by 
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where in the last equation the denominator is exactly given by the determinant of the matrix in Eq.(2.7). The 
unit of  00a =106K. In addition, the thermal moduli 1 , 3 , pyroelectric parameter 3p  and pyromagnetic 

parameter 3  are defined as follows 
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where r  and z  are the coefficients of thermal expansion   =1061/K. The units of these parameters are 
 

       , / , / , /5 2 6 2 4
1 3 3 310 N m K p 10 C m K 10 N AmK       . (2.9) 
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 The multifield material is characterized by twenty one material constants. There are: five elastic 
constants 11c , 12c , 13c , 33c , 44c  (in units GPa), three piezoelectric constants 31e , 15e , 33e  (in units C/m2), 

three piezomagnetic constants 31q , 15q ¸ 33q  (in units N/Am), two magneto – electric constants 11d , 33d  (in 

units 10-9C/Am), two dielectric permittivities 11 , 33  (in units 10-10C/Vm), two magnetic permeabilities 

11 , 33  (in units 10-6N/A2), two coefficients of thermal expansion r , z (in units 10-61/K) and two 

coefficients of heat conduction r , z  (in unit W/Km). Any solution other than explicit analytical ones is 
impractical in the context of multifield material. 
 
3. The temperature changes 

 
 We seek the harmonic function  ,0 0r z  in the form 
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where  x  to be determined from the thermal field boundary conditions. 

 The spheroidal coordinates i  and i  are related to cylindrical coordinates r , i z  by equations 
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and are associated with i  (here i 0 ) and with 0 x a  . The derivatives may be easily calculated, that is 
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 The quantities zQ T z    ,  ,   and zu  associated with the thermoelastic potential 0  vanish 

for ,z 0 r a  , since 0   for ,z 0 r a  . 
 The temperature and heat flux are 
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 The condition for the prescribed temperature    ,T r 0 f r  for ar   gives 
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 This is Abel’s integral equation with the solution 
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 If we assume the distribution of temperature to be cylindrical constant or revolution conical or 
revolution parabolic, that is if 
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Fig.1. Multifield material with temperature change in the circular region ar   as to be constant or 

revolution conical and revolution parabolic. 
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 For constant temperature 0T  we have (here 0  and 0  are for x a ) 
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 The fundamental equations are single – direction coupling such that the thermal loading can change 
electro – magneto – elastic fields,  the mechanical, electric and magnetic loadings cannot change the thermal 
field. This is a theory of uncoupled thermoelasticity of multifield material where the temperature field is 
independent of the electric displacement, and in addition, the inertial terms can be neglected. 
 To satisfy the zero – shear condition at z 0 , we find field defined by harmonic potential (Hankel 
integral) 
 

       , , , , ,i z1
i i 0

0

r z A e J r d i 1 2 3 4


        , (3.11) 

 
in which 
 

   * *sin
, 50 1

2 i 0 i2
00 0

a2 a
m A T d

a


      

 
   (3.12) 

 

where *
2m  and *

id  are defined in the Appendix A by Eqs (A5). 
 Since 
   

  
*

* * * *, ,
i 4

5i i
3i i 4i i 2 5i i

i i 1

a d
a d a d 0 m a d





    
      , (3.13) 

 
the solution satisfies the boundary conditions at ,z 0 r 0   
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where  H  denotes Heaviside’s unit function. 
 The full field in this case is given in analytical form, that is 
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 The nonsingular thermoelastic coupled field can be obtained by superimposing the two parts as given 
by Eqs (3.9) and (3.15). For a multifield material and embedded interior thin heated inclusion subjected to 
temperature 0T  at the contact surface the normal and shear stresses, electric and magnetic potentials and 
electric displacement and magnetic induction in the axial direction are as follow 
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 The generalized stresses and displacements (3.18) are presented graphically in Fig.2. 
 

 
 

Fig.2. The generalized stresses and displacements on the plane z 0 ; are given by Eq.(3.19). 
 
4. The half – space problem 

 
 We assume that the multifield material changes the temperature on the boundary which is given in 
the circular region ar   as the constant cylindrical, revolution conical or revolution parabolic(see Fig.3). 
 

 
 
Fig.3. The half – space under temperature loading: a) cylindrical constant, b) revolution conical,  

c) revolution parabolic. 
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 The electric permittivity and magnetic permeability of the external medium (usually air) is much less 
that the multifield half – space region. For example 0680885,060air11   times lower for the PZT – 4 

commercial piezoelectric and 4754,0590air11   times lower for a typical piezomagnetic. In 

consequence the electric displacement zD  and magnetic induction zB  must vanish on the boundary surface, 
which is also stress free. 
 Thus, we consider the following boundary conditions 
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 To satisfy the zero condition at z=0 for zz , zD  and zB  we obtain the additional displacements Tu , 

T  and T . This thermal problem is obtained as given below. 
 Boundary conditions for generalized stresses yield 
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M  is the 44  matrix with elements jiM  as in Eq.(4.5) (in this equation “-1” denotes the inverse matrix). 
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 The physical thermal fields in the multifield half – space are obtained as follows 
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 The coefficients  , p , and   may be called “the thermal coefficients of generalized compliances”. 

The generalized displacements u,   and   vanish on the boundary ,z 0 r a   and as Fig.2 shows are 

regular except of the point r 0 , where the solution has logarithmic singularity. All physical quantities 
satisfy the regularity conditions at infinity. 
 
5. Punch problem 

 
 We assume that the cylindrical punch is flat ended, maintained at a constant electric and magnetic 
potential and temperature 0T  and loaded centrally by a concentrated force P  and by a concentrated electric 

charge Q  and total magnetic flux B . 
 

  
 

Fig.4. Punch on multifield half – space. 
 
 The contact region is annular 
 
  arr 0  (5.1) 

 
where 0r  is determined by the condition (see Fig.4) 
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 The inner circumference of the annulus will shrink with increasing load. 
 The boundary conditions are 
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 Using the Hankel transform method the integral equations become 
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where C  is the indentation stiffness matrix defined as follows 
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and where id , il  and ik  are the corresponding algebraic cofactors of the multifield compliance matrix 

 M 4 4  with elements  , , , , , , , ,jiM i 1 2 3 4 j 2 3 4 5  , for j 2 , j 3  and j 4 , respectively 
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. (5.9) 

 
 Then, if  det2m M , the material parameters id , il  and ik  are 
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here T  denotes the transpose of a matrix. The condition (5.4) is satisfied identically. We have 
 

  2 i 3i i 4i im d a l a k     , 

   (5.11) 

  i i 3i i 3i i 4i i 4i i 5i i 5i i 5i il k a d a k a d a l a d a l a k 0                  
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where the sum is from 1 to 4. The coefficients id , il  and ik  are given in the Appendix A by Eqs (A6). 

 The integral equations become 
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 Changing the variable ,0r r a  on ,0   by equation 
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and assuming that  U  ,    ,     can be presented by integral as follows 
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we obtain 
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 Here  1F  ,  2F   and  3F   are arbitrary continuous functions,  R r   is Dirac’s delta 

function and the following formula is used 
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 Then Eqs (5.13) are identically satisfied. Introducing the series representations 
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we obtain from Eqs (5.16) 
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 Substituting Eqs (5.18) and (5.15) into the boundary conditions (5.12), we obtain 
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 Using the formula (Gradsztejn and Ryzhik, 1965) 
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 Then Eq.(5.20) becomes 
 

       
 

,
n

T
n 0 n c 0

n 0 T0
n 0

a
1

b J r Z r b d r

c r





  
                     

  . (5.22) 

 
 Introducing the new coefficients nd  and ne  instead of nb  and nf  and ng  instead of nc  as follows 
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Eq.(5.22) are converted to five algebraic equations with respect to na , nd , ne , nf  and ng  
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where 
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 We conclude that nnn fda   and nn ge  . By using Neumann’s formula (Gradsztejn and Ryzhik, 
1965) 
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and the Fourier expansion for the function  rh  
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Eqs.(5.24) are converted to two simultaneous algebraic equations 
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and where 0m  is Kronecker’s delta. 

 From the condition that  ,zz r 0  must be finite at  0r r 0    we conclude that the infinite series 

in Eqs (5.19) must be zero for  00 r r 0   . This gives the condition 
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 The equation gives the relation between the depth of penetration of the punch  , the boundary 
electric and magnetic potentials 0  and 0  and the radius of the contact region 0r , since the sets na  and ne  

depend on 0r . Of course, temperature 0T  appears in this equation. 
 Finally, we obtain 
a) contact stress 
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   , (5.31) 

 
b) electric displacement 
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c) magnetic induction 
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d) displacement on the boundary z 0  
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e) electric potential on the boundary z 0  
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f) magnetic potential on the boundary z 0  
 

   , n
0 n 0

n 0

r
r 0 a I

a





     
 

  (5.36) 

 
where the integrals 
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0 0 n 1 n 2
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    , (5.37) 

 
are presented analytically, as well as the matrix mnA  in Eq.(5.28), by Rogowski (2006). 

 It can be shown that the gradient of  ,zu r 0  is bounded for 0r r 0   and unbounded for 

0r r 0   and for r a 0   tending, to plus or minus infinity, respectively. If in the contact region 
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potentials 0  and 0  appear the gradient of  ,zu r 0  tends to minus infinity at the left neighborhood of the 

contact circle 0r r . This phenomenon occurs, among others, in adhesive contact problem. 
 The equilibrium of the punch yields 
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 The coefficients mh  are calculated from the formulae 
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 (5.39) 

 
 The solution of the infinite systems of algebraic Eqs (5.28) for 0r 0  is 
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where n0  is Kronecker’s delta. 
 Equations (5.38) and (5.40) yield 
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which is the solution of the problem (“theoretically”) of full contact. 
 Note that the solution  nn e,a  depends on the ratio of contact radii 0r a  and the inner radius 0r  is 

unknown. Notice that for an annular contact region the solution  nn e,a  of the simultaneous algebraic 

equations satisfies the inequalities 
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 The piezoelectric response amplitude 6m m  and piezomagnetic response amplitude 6m m  for real 
materials are negative. This proves that increasing the applied electric and / or magnetic potentials will 
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always reduce the indentation depth  . Similarly, if 0T p  and / or 0T   are positive the indentation depth   is 

smaller than that for isothermal problem. For negative 0T p  and / or 0T   the thermal generalized 

displacement T  and T  change the sign and   increases. 
 The piezoelectric and piezomagnetic response amplitudes are defined as follows 
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 (5.43) 

 
 For BaTiO3 – CoFe2O4 commercial composite we have 
 
  PeR = -2.14×10-9m/V,        PmR = -7.7×10-9m/A. 
 
 The indentation elastic stiffness coefficient 
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, (5.44) 

 
assumes the values of 62.5GPa for the multifield composite BaTiO3 – CoFe2O4 and 70.4GPa for a pure 
elastic transversely isotropic material with parameters ijc  only for this composite. 

 The indentation piezoelectric coefficient is 
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. (5.45) 

 
 The indentation piezomagnetic coefficient is 
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for this multifield material. 
 The total concentrated electric charge Q  and total magnetic flux B  in the contact region are 

obtained by integrating zD  and zB  over the circle of contact. We obtain 
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 The coupling terms 6m , 6m~ , 8m  (or 5m , 9m , 10m ), which are the elements of the matrix on the 

right hand side of Eq.(5.8) are non – zero for multifield materials. This suggests that even in the absence of 
an applied electric and / or magnetic potentials, an electric and magnetic charge could be accumulated on the 
surface due to the applied mechanical load or displacement. 
 Similarly, an applied electric potential and / or magnetic potential could cause mechanical pressure at 
the contact region. Solving Eqs (5.38) and (5.47) with respect to  , 0  and 0 , we obtain the corresponding 
generalized compliance relations. 
 Defining the stress, electric displacement and magnetic induction intensity factors as follows 
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we obtain 
 

     , , , ,
T

D B
1

K K K P Q B
2 a a

 


. (5.49) 

 
6. Single phase materials and multifield composite materials 

 
 Use the notation 
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 Of course, 1
E EC C  is the square unit matrix. 

 Similarly, 
 

    , , ,2 2 2 2
1 31 15 i 2 31 33 i 11 13 i 1 11 33 iq q q q q q c c c              , (6.3) 

 

  ,
2 1

1
H 1 1 H

1 2 1
2 1

0 0 0 q
1

C q 0 C 0 0 0
q q c

c 0 q 0 c q


    

         
      

. (6.4) 

 
 Thus, we obtain 
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2H
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a c qq q c c c a

                              
, (6.6) 

 
respectively, for piezoelectric and piezomagnetic thermoelastic materials. 
 Note that for a piezoelectric material 4ia 0 , but 3ia  define the coefficients 7ia , that is also the 

magnetic induction zB , by the electromagnetic constant 11d . Similarly, for the piezomagnetic material 

where 3ia 0 , 4ia  define 6ia , that is also zD , as a consequence of the electromagnetic effect (see Eqs 
(2.7)). 
 For a composite two – phase (E + H) multifield material the compliance matrix may be defined 
as 
 

   1 1 1
EH E H

1
C C C

2
    . (6.7) 

 
 The constitutive stiffness matrix for the composite will be the inversion of this compliance matrix. 
The solution presented here may be used for composite materials made of multifield materials. 
 
7. Conclusions 

 
 The potential harmonic theory method has been generalized in this paper to analyze the thermal 
Green’s functions for a multifield material. Green’s functions are used to analyze the contact problem of a 
heated and conducting punch indenting a multifield half – space. The boundary value problem is converted 
to triple integral equations, which are reduced to simultaneous two infinite systems of algebraic equations. In 
the limiting case of full contact, which theoretically may occur, the closed form of solution is obtained. The 
expressions for displacements, stresses, electric and magnetic potentials and electric displacement, and 
magnetic fluxes are presented in terms of infinite series. Some important relationships between the applied or 
accompanied loads and indentation depth, constant electric potential and magnetic potential are established. 
It is worth mentioning here again that the general solution shall take another form for equal eigenvalues 
cases. However, one can also derive the corresponding results of equal eigenvalues directly from the ones of 
distinct eigenvalues, by utilizing the well known l’Hospital rule. 
 In the light of the analytical analysis the following conclusions can be formulated. 
1. Increasing the applied electric and / or magnetic potentials will always reduce the indentation depth of 

the punch. 
2. The indentation electric stiffness for the representative multifield material BaTiO2 – CoFe2O3 is smaller 

than that for a pure elastic transversely isotropic material. 
3.  The hypothesis of the constant electric and magnetic potential in the contact region is equivalent to a 

centrally applied concentrated charge Q and magnetic induction B , which can be obtained by 
integrating electric displacement and / or magnetic flux over the annular contact region. 

4. It can be seen from the obtained formulae that the complete solution can be separated into three parts: 
the first part corresponds to the normal displacement  , the second to the electric potential 0  and the 

third to the magnetic potential 0 . 
5. If the contact region electric and magnetic potentials occur (conducting punch), then the 

phenomenon similar to adhesive contact occurs in the left neighborhood of the inner radius of the 
contact region. 
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Nomenclature 
 
 a – outer radius of the contact region or radius of the heated circular field 
 B – magnetic flux applied to the punch 
 ,r zB B  – magnetic inductions 

 C – indentation stiffness matrix 
 D – electric charge applied to the punch 
 ,r zD D  – electric displacements 

 d – electromagnetic constants 
 E – electric field 
 e – piezoelectric constants 
 q – piezomagnetic constants 
 H – magnetic field 
 mJ  – Bessel function of the first kind of order m 

 , ,B DK K K  – stress, electric displacements, magnetic induction intensity factors, respectively 

 P – force applied to the punch 
 Q – heat flux or electric charge applied to the punch 
 0r  – inner radius of the contact region 

 T – temperature 
 ,r zu u  – components of displacement 

 z – vertical coordinate 
   – indentation depth 
   – dielectric constants 
 ,   – the oblate spheroidal coordinate system 

 i  – eigenvalues of multifield material 

   – magnetic constants 
   – Hankel parameter 
   – stress tensor 
   – electric potential 
 0  – electric potential on the contact surface 

   – magnetic potential 
 0  – magnetic potential on the contact surface 

 
Other symbols are defined in the text of the paper. 
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From author 
 
 The Curie brothers discovered the piezoelectric effect in 1880 (Cady W. G., Piezoelectricity, New 
York, McGraw – Hill, 1964). Today, over a 100 piezoelectric materials or composites are known (Pohanka 
R. C., Smith P. L., Recent advances in piezoelectric ceramics, In: Levinson M. L., editor, Electronic 
ceramics, New York: Marcel Dekker, 1988). 
 The electro – mechanical, magneto – mechanical, electro – magnetic coupling of those materials, 
which I name “multifield materials”, has an immense technological potential in designing “smart” 
materials and structures ranging from huge aerospace structures to miniaturized medical devices and 
miniatural medical apparatures. Multifield materials have been widely used for applications such as sensors, 
filters, ultrasonic generators and actuators, magnetic field probes, acoustic and ultrasonic devices, 
hydrophones. Also these materials have been employed as integrated active structural elements. These 
structures are capable of monitoring and adapting to their environment providing a “smart”, response to the 
external conditions. Interested readers may refer to a state of the art survey by Rao S. S., Sunar M., 
Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey, Appl. Mech. 
Rev., 1994, 47, 113 – 123. One of the practical examples of a piezoelectric device is a piezoelectric 
accelerometer for triggering the onset of an airbag in tens of thousandths of a second during the accident. 
The advanced micro – electro – mechanical systems use piezoelectric materials in the latest technologies of 
smart / intelligent designs featuring miniaturization. 
 The physical law for piezoelectric materials has been explored by Nowacki W., in 1 Some general 
theorems in thermo – piezoelectricity, J. Therm., Stresses, 1978, 1, 171 – 182, 2 Foundations of linear 
piezoelectricity. In: Parkus H, editor, Electromagnetic interaction in elastic solids. Wien, Springer, 1979, 3 
Mathematical models of phenomenological piezoelectricity. New problems in mechanics continua, Waterloo, 
Ontario: University of Waterloo Press, 1983, pp. 29 – 39. 
 Applications today: important roles in the design and health monitoring of ship and marine 
structures by establishing plentiful styles of devices such as sensors, actuators and power supplies with the 
responsibility of electro – magneto – mechanical energy conversion. Other fields of applications include: 
microwave electronics, optoelectronics, electronic instrumentation and scanning probe microscopy 
technique. 
 Due to exceptional functions of multifield materials such as flat frequency response and 
transformation of energy from one form to the other (mechanical, electric, magnetic or thermal energy) this 
type of composite exhibiting piezoelectric and piezomagnetic properties has found increasing applications in 
the following branches: aerospace, automotive, industries and submarines. 
 Nowadays, multifield composite materials have a wide range of applications in engineering science 
such as space planes, supersonic, air planes, rockets, missiles, fusion reactions and submarines. 
 This paper concerns some problems of mechanics of multifield materials. The results are new in the 
world science. I addresses it on the occasion of the 60th anniversary of my Department and 50 – years of my 
educational and research work. 
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Quo vadis mechanics? 

 
BIMIMETING IN MATERIALS ENGINEERING 
 
 People observed and investigated products of nature to use its constructions in technology. 
“Bimimeting is about separating from nature good projects. It presents the way from biology to the nature”, 
J. F. V. Vincent, Bimimeting modeling, Phil. Trans., R., Soc., London B, 358 (2003), 1597. 
 

 
 
Fig.1.  Bimimeting in dissimilar domains and disciplines of science (Konopka K., Wzorce z natury w 

technice i inżynierii materiałowej (Models from the nature in technology and material engineering), 
Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011). 

 
MEANDERS OF MULTIFIELD MATERIALS 
 

 
 
Def: Piezoelectricity is an electro – mechanical phenomenon, which couples elasticity and electricity 
through the existence of pressure induced electrical field or electric induced stress field. 
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Thermoelasticity – If temperature of the body increases (decreases) the displacements change and the 
stresses occur. 
 
Does inverse phenomenon exist? 
 W. Nowacki published some papers on coupled thermoelasticity. Other scientists in experiments did 
not accept this theory. I think that such materials exist in nature, so the change of displacement, electric and 
magnetic fields changes the temperature of the body. Does inverse coupled thermomagnetoelectroelasticity 
exist or not? The answer is as follows: It does in theory, but materials in nature have not been discovered 
yet. 
 
Appendix A. The material coefficients for mulifield materials 
 
 A1. The material parameters in the characteristic Eq.(2.6) are as follows 
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   ,2 2 2 2
11 33 11 11 44 33 44 33 112c d d c c d c c d   

 

 

  

     2 2 2 2
11 33 44 11 15 11 33 44 11 15 44 31 11 31 11

2 2 2 2 2 2
31 15 31 15 11 11 11 11 44 11 33

13 15 31 11 13 15 31 11 11 15 33 11 11 15 33 11

2 2
13 15 11 13 15 11 31 15 31

d c c e c c q c e q

e q q e c d c 2c c d d

2c q q 2c e e 2c q q 2c e e

2c q 2c e 2e e q

             

      

        

    

 

      ,

15 11 15 15 33

11 13 15 15 31 13 15 15 31 11 11 15 33 15 33 44 31 31

q 2c e q d

d 2c e q q 2c q e e d 2c e q q e 2c e q

 

             

 

 

   2 2
11 11 15 11 15 44 11 11 11 44 11 15 15e c e q c d c d 2e q           , 

 

   2
11 33 13 13 44c c c c c 2c   . 

 
A2. The parameters 1a , 1b , 1c , 1d  (define ia1 ), and 2a , 2b , 2c , 2d  in Eq.(2.7) are 
 

 

 
        

        
 

2 2 2
1 1 33 33 33 33 33 33 33 33 33 33 33

2
3 13 44 33 33 33 31 15 33 33 33 33 31 15 33 33 33 33

2
3 13 44 33 33 33 33 31 15 33 33 33 33 31 15 33 33 33

3 13 44

a c d e q 2e d q

c c d e e e d q q q q d e

c c d e q e e d c q e q q c e

p c c

            
                
              

           ,2
33 33 33 33 31 15 33 33 33 33 31 15 33 33 33d q e q q d c q e e e c q          
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2 2 2
1 1 33 11 33 33 11 33 11 44 33 33 33 11 33 11 33

33 33 15 33 15 11 33 33 15 33 33 15 33 33

3 13 44 11 33 33 11 33 11 13 15 15 33 33 15 11 33 33 15

31 15 15 3

b c 2d d c d q e

2d e q q e 2d e q 2q q 2e e

c c 2d d q q q q d e d e

e e e

              
       

               
   

     
  

    

3 33 11 11 33 11 15

3 13 44 11 33 33 15 15 33 33 11 31 15 44 33 33 11 15 33 15 33

31 15 44 33 33 11 15 33

3 13 44 11 33 33 15 15 33 33 11 31 15 44 33 33 11 15 33 1

e d q d q

c c d e d e q q e e c d c d q e e q

q q c c 2e e

p c c d q d q e e q q c d c d q e e

    
            

      
            
   ,

5 33

31 15 44 33 33 11 15 33

q

e e c c 2q q

 
      

 

 

 

   
 

        

  

2 2 2
1 1 44 11 33 33 11 11 33 33 11 11 11 33 15 33 15

11 15 33 15 33 15 33 11 11 15 33

2
3 13 44 11 11 11 31 15 11 15 11 15 31 15 11 15 11 15

3 13 44 15 11 15 11 3

c c 2d d c d q e

2d e q q e 2q q 2 e e

c c d e e e d q q q q d e

c c q e d e

                
      

               

          
         ,

2
1 15 11 44 15 15 31 15 44 11 15

2
3 13 44 15 11 15 11 31 15 11 44 15 15 31 15 44 11 15

e d c q e q q c e

p c c e q d q q d c q e e e c q

        
            

 

 

  2 2 2
1 1 44 11 11 11 11 15 11 15 15 15 11d c d e q 2e q d           

, 

 

      2
2 44 3 33 33 33 3 33 33 33 33 3 33 33 33 33a c d d e q p d q e             

, 

 

 

        

      

   

 

2
2 1 13 44 33 33 33 31 15 33 33 33 33 31 15 33 33 33 33

2
3 11 33 33 33 44 11 33 33 11 31 15 31 15 33

2 2
31 15 33 31 15 33

3 11 33 33 33 33 44 11 33 33 15 15 33 3

b c c d e e d q e q q d e q

c d c 2 q q e e d

q q e e

c d e q c d e d e q q

               
             

      
            

       

       

        ,

3 11 13 44 33 31 15

2
33 31 15 33 31 15 13 44 33 31 15 31 15

3 11 33 33 33 33 44 11 33 33 15 15 33 33 11 13 44 33 31 15

2
33 31 15 33 31 15 13 44 33 31 15 31 15

c c d e e

q e e q q c c e q q e e

p c d q e c d q d q e e c c d q q

e q q e e c c q q q e e
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2 1 13 44 11 33 33 11 31 15 11 33 33 15 31 15 11 33 33 15

31 15 15 33 33 11 31 15 15 33 33 11 13 44 11 33

2 22
3 44 11 11 11 11 11 33 33 11 11 31 15 11 31 15

31

c c c e e d q d q q q d e d e

q q q q e e e e 2 c c d d

c d c e e q q

2 e e

               
            

                
   

        
        

        
   

15 31 15 11

3 44 15 11 15 11 31 15 13 44 11 31 15 15

31 15 13 44 11 31 15 15 11 11 33 15 33 11 33 33 15

3 44 15 11 15 11 31 15 13 44 11 31 15 15

31 15 13 44 11

q q d

c q e d e e c c d e e q

q q c c e e e c d e e d q q

p c e q d q q c c d q q e

e e c c q

 
        

            
        

          ,31 15 15 11 11 33 15 33 11 33 33 15q q c d q q d e e      

 

 

 

       

       

  .

2 1 13 44 11 11 31 15 11 15 31 15 11 15 31 15 15 11

2 2
31 15 11 15 13 44 11 3 11 11 11 11 3 11 15 11 15 11

3 11 15 11 15 11

d c c e e d q q q d e q q q

e e e c c d c d c e d q

p c q d e

            
                   

    

 

 
A3. The parameters i3a  and i4a  in Eqs (2.1) are defined alternatively to those defined by Eqs (2.7) by 

parameter i1a  as follows 
 

  

     
     

      
     

2 2
3i 1 31 15 33 i 15 13 44 11 33 i

2 2
3 31 15 31 15 i 44 i 11 11 33 i

2 2
3 i 13 44 31 15 44 i 11 33 i 15 1i i

2 2 2 2
1 33 i 44 11 33 i 33 i 15 33 i 15

3 i 1

a e e q q c c d d

e e q q c c d d

p c c q q c c q q a

c c d d q q e e

c

             
           

            

            

       
     
     

     
 

2 2
3 44 11 33 i 31 15 33 i 15

2 2
3 i 13 44 33 i 15 31 15 33 i 44

2 2
3 i 31 15 33 i 15 31 15 33 i 15

2 2 2 2
1 33 i 15 11 33 i 33 i 15 11 33 i

3 i 31 15 11 33

c d d q q e e

p c c q q q q c c

p e e q q q q e e

e e d d q q

e e d d

         
           

           

              

          ,
1

2 2
i 31 15 11 33 iq q
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2 2
4i 1 31 15 33 i 15 13 44 11 33 i

2 2 2
3 31 15 i 44 i 11 11 33 i

2 2
3 i 13 44 31 15 44 i 11 33 i 15 1i i

22 2 2
1 33 i 44 11 33 i 33 i 15

3 i 13 44 11

a e e e e c c

e e c c

p c c e e c c e e a

c c e e

c c

                
             

            

             

         
     
     

     
    

2 2
33 i 31 15 33 i 15

2 2
3 i 13 44 33 i 15 31 15 33 i 44

2 2
3 i 31 15 33 i 15 31 15 33 i 15

2 2 2 2
1 33 i 15 11 33 i 33 i 15 11 33 i

2
3 i 31 15 11 33 i 31 15

e e e e

p c c e e e e c c

p e e q q q q e e

e e d d q q

e e d d q q

       
           

           

              

          .
1

2
11 33 i


     

 

 
A4. The roots of characteristic Eq.(2.6) are presented by formulae 
 

  2 7
1 5 6 5 6

5 6

Rb 1 1 1
R R 2R R

4a 2 2 4 R R
       


, 

 

  2 7
2 5 6 5 6

5 6

Rb 1 1 1
R R 2R R

4a 2 2 4 R R
       


, 

 

  2 7
3 5 6 5 6

5 6

Rb 1 1 1
R R 2R R

4a 2 2 4 R R
       


, 

 

  2 7
4 5 6 5 6

5 6

Rb 1 1 1
R R 2R R

4a 2 2 4 R R
       


 

 
where 
 

  ;3 2 2 2
1 2R 2c 9bcd 27ad 27b e 72ace R c 3bd 12ae        , 

 

   ;2 3 3
3 1 2 4 1 3

1
R R 4R R R R

2
    , 

 

  ; ;
2 3

42
5 6 72 3 2

4

RRb 2c b 4bc 8d
R R R

3a 3aR 3a a4a a a
       . 
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A5. The material parameters in Eqs (3.12) are as follows 
 

  * 44 53 43 54 42 54 44 52 43 52 42 53
1 32 33 34

3 4 4 2 2 3

a a a a a a a a a a a a
d a a a

     
                    

, 

 

  * 43 54 44 53 44 51 41 54 41 53 43 51
2 31 33 34

4 3 1 4 3 1

a a a a a a a a a a a a
d a a a

     
                    

, 

 

  * 44 52 42 54 41 54 44 51 42 51 41 52
3 31 32 34

2 4 4 1 1 2

a a a a a a a a a a a a
d a a a

     
                   

, 

 

  * 42 53 43 52 43 51 41 53 41 52 42 51
4 31 32 33

3 2 1 3 2 1

a a a a a a a a a a a a
d a a a

     
                   

, 

 

  * *
4

2 5i i
i 1

m a d


 . 

 
A6. The material parameters id , il , and ik  in Eqs (5.8) and (5.11); , , ,i 1 2 3 4 , are as follows 

 
       1 52 33 44 43 34 53 34 42 32 44 54 32 43 33 42d a a a a a a a a a a a a a a a      , 

 
       2 51 34 43 33 44 53 31 44 34 41 54 33 41 31 43d a a a a a a a a a a a a a a a      , 

 
       3 51 32 44 34 42 52 34 41 31 44 54 31 42 32 41d a a a a a a a a a a a a a a a      , 

 
       4 51 33 42 32 43 52 31 43 33 41 53 32 41 31 42d a a a a a a a a a a a a a a a      , 

 
       1 52 43 44 53 44 42 54 42 43l a a a a a a a a a      , 

 
       2 51 44 43 53 41 44 54 43 41l a a a a a a a a a      , 

 
       3 51 42 44 52 44 41 54 41 42l a a a a a a a a a      , 

 
       4 51 43 42 52 41 43 53 42 41l a a a a a a a a a      , 

 
       1 52 34 33 53 32 34 54 33 32k a a a a a a a a a      , 

 
       2 51 33 34 53 34 31 54 31 33k a a a a a a a a a      , 

 
       3 51 34 32 52 31 34 54 32 31k a a a a a a a a a      , 

 
       4 51 32 33 52 33 31 53 31 32k a a a a a a a a a      . 
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A7. The parameters in Eqs (4.6) have the following matrix forms 
 

  ,
52 53 54 51 53 54

1 62 2 63 3 64 4 2 61 1 63 3 64 4

72 2 73 3 74 4 71 1 73 3 74 4

a a a a a a

d a a a d a a a

a a a a a a

   
              
           

  , 

 

  ,
51 52 54 51 52 53

3 61 1 62 2 64 4 4 61 1 62 2 63 3

71 1 72 2 74 4 71 1 72 2 73 3

a a a a a a

d a a a d a a a

a a a a a a

   
              
           

  , 

 

  ,

52 53 54 51 53 54

52 53 54 51 53 54
1 2

2 3 4 1 3 4

72 2 73 3 74 4 71 1 73 3 74 4

a a a a a a

a a a a a a
l l

a a a a a a

   
   
             
   

           

  , 

 

  ,

51 52 54 51 52 53

51 52 54 51 52 53
3 4

1 2 4 1 2 3

71 1 72 2 74 4 71 1 72 2 73 3

a a a a a a

a a a a a a
l l

a a a a a a

   
   
             
   

           

  , 

 

  ,

52 53 54 51 53 54

52 53 54 51 53 54
1 2

2 3 4 1 3 4

62 2 63 3 64 4 61 1 63 3 64 4

a a a a a a

a a a a a a
k k

a a a a a a

   
   
             
   

           

  , 

  ,

51 52 54 51 52 53

51 52 54 51 52 53
3 4

1 2 4 1 2 3

61 1 62 2 64 4 61 1 62 2 63 3

a a a a a a

a a a a a a
k k

a a a a a a

   
   
             
   

           

   

 
A8. The following integrals are used 
 

   sin
tani z 1

0 i i i

0

d a
e J r d an 1

d 2


                       , 

 

   sin
tani z 1 i

1 i 2
i0

d a r
e J r d

d 2 2 1


    

                
 , 

 

   sin
tani z 1 i

0 i 2 2
i i0

d a
e J r d

d 2


    

              , 
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sin

i z i
1 2 2 2

i i i0

d a r
e J r d

d a 1


  

             , 

 

   sin
ln tani z 1i

0 i i i2
i0

1a a
e J r d a 1

2 1 2


                      , 

 

     sin
tani

2
z 1 i

1 i i i2 2
i0

a a r
e J r d 1

r 2 2 1


   

              
 , 

 

   sin
tani z 1

0 i

0

a
e J r d

2


  

    
 , 

 

     sin
i z

1 i

0

a a
e J r d 1

r




    
  

 
where 
 

       , , ,
22 2 2 2 2 2 2 2 2 2 2

i i i i i
1

r z a r z a 4 z a r z a
2a

            , 

 

       , , ,
22 2 2 2 2 2 2 2 2 2 2

i i i i i
1

r z a r z a 4 z a r z a
2a

             

 
and i  are the roots of Eq.(2.6) with positive real parts. 
 
 Note that the improper integrals (A.8) are new analytical results obtained by the author in his 
textbooks. In addition, the improper integrals (A.8)5 and (A.8)6 are not presented earlier. The integrals (A.8) 
are useful in other problems of mechanics, which may be solved with the use of the integral Hankel 
transformation and integral equation technique method. 
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