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The solution for a multifield material subjected to temperature loading in a circular region is presented in an
explicit analytical form. The study concerns the steady — state thermal loading infinite region (heated embedded
inclusion), half — space region and two — constituent magneto — electro — thermo — elastic material region. The
new mono — harmonic potential functions, obtained by the author, are used in the analysis of punch problem. The
more interested case in which the contact region is annular is analyzed. By using the methods of triple integral
equations and series solution technique the solution for an indentured multifield substrate over an annular contact
region is given. The sensitivity analysis of obtained indentation parameters shows some interesting points. In
particular, it shows that the increasing of the applied electric and magnetic potentials reduces the indentation
depth in multifield materials.

Key words: magneto — electro — thermo — elastic medium, conducting and heated punch, contact problem, exact
solution.

1. Introduction

Solutions for various cases of contact problems can be found in the books by Gladwell (1980),
Johnson (1985), Hills et al. (1993), Raous et al. (1995) and Rogowski (2006; 2006). However, in these books
elastic fields themselves are considered and distinctive mathematical methods are used and elaborated.
However, there is no parallel work in the domain of magneto — electro — thermo — elasticity. In the recent
paper by Chen et al. (2010) the authors obtained the coupled fields for indentation of a multiferroic
composite half — space for three common indenters: flat — ended, conical and spherical. The complete contact
problem is considered under the assumption of circular contact region. Various important discussions related
to indentation of piezoelectric materials, e.g., on the piezoresponse force microscopy (Kalinin et al., 2004)
can be directly borrowed and applied to piezomagnetic materials. It is reasonable to assume that the
extension of the findings to multifield composite materials is valid. The effective solution to the contact
problem of multifield foundation and truncated conical punch or punch with a concave base was obtained
and published recently by the author (Rogowski and Kalinski, 2012; Rogowski, 2012). In this paper, five
potential mono — harmonic functions, obtained by the author, are utilized to solve the punch problem in
which the contact region is always annular. The outer circumference of the annulus coincides with the edge
of the punch. The inner circumference will shrink with an increasing load. The inner radius is not known a
priori and is obtained from the conditions of equal thermal displacement and indentation mechanical depth of
the punch on this circumference. On this boundary the phenomenon of adhesive contact is observed. The
problem is solved by triple integral equations technique. The relationships between the force, electric charge,
magnetic flux, temperature, indentation depth of the punch and electric and magnetic potentials on the
boundary are derived.
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2. Axisymmetric solutions of a multifield body

The generalized multifield solution considered here is independent of the variable 0 in the
cylindrical coordinate system (r,6,z). Therefore, the mechanical displacement u, and u, the electric

potential ¢ and magnetic potential y, the mechanical stresses o,, o5, o, and o, , the electric
displacements D, and D, , the magnetic inductions B, and B, can be generally expressed as (Rogowski,
2014).
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are the components of electric and magnetic field vectors.
In the fundamental solution @, (r,z;) are the harmonic functions of the variables 7 and z; = 4;z,

that is
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O 100 (00 (i 1234. (2.3)
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The temperature in a steady — state and uncoupled thermoelastic problem is governed by
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where A, A, are the heat conduction coefficients in unit W/Km and 7' is described by ¢, (r,z,) as follows

o, A
T(r,zy)=a,,—~, zZy =Nz, Ao = . 2.5
( ()) 00 azg 0 0 0 7\‘2

The quantities A; (i =1,2,3,4 ) are eigenvalues of multifield material defined as the roots of equation

ald 4+ S+ At +dA +e=0 (2.6)

where a, b, ¢, d and e are given in the Appendix A by Eqs Al. The roots of Eq.(2.6) are presented by
formulae A4. The other material parameters are given by
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where in the last equation the denominator is exactly given by the determinant of the matrix in Eq.(2.7). The
unit of [a00]=] 0°K. In addition, the thermal moduli B ;> B3, pyroelectric parameter p; and pyromagnetic

parameter y; are defined as follows

B, 2(011 +012)‘1r +Cp30,, Bs =2¢c30, + 330,
2.8)

p3 =2e;;0, +e330., V3 = 2q3,%, + 4330,

where o, and o, are the coefficients of thermal expansion [a] =10°1/K. The units of these parameters are

[B,.Bs]=10° N/m’K, [p;]=10°C/m’K, [y;]=107N/AmK . (2.9)
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The multifield material is characterized by twenty one material constants. There are: five elastic
constants c;;, ¢, C;3, C33, C44 (in units GPa), three piezoelectric constants e;;, e;5, e;; (in units C/m’),

three piezomagnetic constants g;;, q;5, ¢33 (in units N/Am), two magneto — electric constants d;;, d3; (in
units 70”°C/Am), two dielectric permittivities €;;, €;; (in units /07°C/Vim), two magnetic permeabilities
Wy, b3z (in units / 0°N/A?%), two coefficients of thermal expansion a,, o, (in units / 0°1/K) and two
coefficients of heat conduction A,, A_ (in unit W/Km). Any solution other than explicit analytical ones is
impractical in the context of multifield material.

3. The temperature changes

We seek the harmonic function ¢ (7,z,) in the form
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where (p(x) to be determined from the thermal field boundary conditions.

The spheroidal coordinates &; and m; are related to cylindrical coordinates 7, A,z by equations
= (148 )(1-n)), nz=aEm, 20, |nf<i (32)
and are associated with A; (here i =0) and with 0 <x <a . The derivatives may be easily calculated, that is
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The quantities Q=-A_3T/0z, ¢, v and u, associated with the thermoelastic potential ¢, vanish
for z=0,r>a,since n=0 for z=0,r>a.
The temperature and heat flux are

a

T(r,z)z éi—()de, Q(r,z)z XXZT

— dx . 3.4
LEHmy X ox)ds .

o
ox| x(g5+my |

The condition for the prescribed temperature T(r,0)= f(r) for r <a gives

j% 1). (3.5)

This is Abel’s integral equation with the solution

2d d
¢(x)=;5£%- (3.6)

X —r

If we assume the distribution of temperature to be cylindrical constant or revolution conical or
revolution parabolic, that is if

2
f(r):To[z,z—i,z—(ij J r<a, (3.7)
a a

the solution (I)(x) will be

2
¢(x):%To[],1—%,1—2(gj J (3.8)

respectively.

Fig.1. Multifield material with temperature change in the circular region » <a as to be constant or
revolution conical and revolution parabolic.



536 B.Rogowski

For constant temperature 7;, we have (here &, and m, are for x=a)
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The fundamental equations are single — direction coupling such that the thermal loading can change
electro — magneto — elastic fields, the mechanical, electric and magnetic loadings cannot change the thermal
field. This is a theory of uncoupled thermoelasticity of multifield material where the temperature field is
independent of the electric displacement, and in addition, the inertial terms can be neglected.

To satisty the zero — shear condition at z=0, we find field defined by harmonic potential (Hankel
integral)
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where m; and dl.* are defined in the Appendix A by Eqs (A5).
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the solution satisfies the boundary conditions at z=0,r >0
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where H (0) denotes Heaviside’s unit function.
The full field in this case is given in analytical form, that is
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The nonsingular thermoelastic coupled field can be obtained by superimposing the two parts as given
by Egs (3.9) and (3.15). For a multifield material and embedded interior thin heated inclusion subjected to
temperature 7}, at the contact surface the normal and shear stresses, electric and magnetic potentials and

electric displacement and magnetic induction in the axial direction are as follow
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The units of thermal moduli 3, and Bj , pyroelectric and pyromagnetic constants p; and p;, and

v; and y; are
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The generalized stresses and displacements (3.18) are presented graphically in Fig.2.

heated heated
inclusion inclusion

2q 2q

"% r

1 1

(3.20)

Fig.2. The generalized stresses and displacements on the plane z =0; are given by Eq.(3.19).

4. The half — space problem

We assume that the multifield material changes the temperature on the boundary which is given in
the circular region » < a as the constant cylindrical, revolution conical or revolution parabolic(see Fig.3).

Fig.3. The half — space under temperature loading: a) cylindrical constant, b) revolution conical,

¢) revolution parabolic.
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The electric permittivity and magnetic permeability of the external medium (usually air) is much less
that the multifield half — space region. For example €;,/¢,;. =60/0,0885=680 times lower for the PZT — 4
commercial piezoelectric and p;;/p,;, =590/0,4n=475 times lower for a typical piezomagnetic. In
consequence the electric displacement D, and magnetic induction B, must vanish on the boundary surface,

which is also stress free.
Thus, we consider the following boundary conditions
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The quasi — harmonic functions needed for satisfying the boundary conditions are

[oe}

¢i(”’7‘iz)=J‘Bi(§)eixiéZJo (&r)de (4.3)

0

where J, (&r) is the Bessel function and & is a parameter of the Hankel transform.

The mixed boundary conditions on the plane z=0 give
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To satisfy the zero condition at z=0 for 6_,, D, and B, we obtain the additional displacements uy,
¢7 and y; . This thermal problem is obtained as given below.
Boundary conditions for generalized stresses yield
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as in Eq.(4.5) (in this equation “-1” denotes the inverse matrix).
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The physical thermal fields in the multifield half — space are obtained as follows
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The coefficients oo, p, and ¥ may be called “the thermal coefficients of generalized compliances”.
The generalized displacements u, ¢ and y vanish on the boundary z=0,»>a and as Fig.2 shows are

regular except of the point » =0, where the solution has logarithmic singularity. All physical quantities
satisfy the regularity conditions at infinity.

5. Punch problem

We assume that the cylindrical punch is flat ended, maintained at a constant electric and magnetic
potential and temperature 7;, and loaded centrally by a concentrated force P and by a concentrated electric

charge O and total magnetic flux B.

V-

multi—field material
c,d,e,q,&,u,0,\ (21 constants)

Fig.4. Punch on multifield half — space.

The contact region is annular

nn<r<a (5.1)

where 7, is determined by the condition (see Fig.4)

2 2
5=5T(r0):2T0“a 1n[i+\/“—2_1}_\/ S (5.2)

T "y 0 a

The inner circumference of the annulus will shrink with increasing load.
The boundary conditions are

uZ(r,()) )
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Gzz(r,0)=0, rz0, (5.4)
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0
D (r,O) =0, r<rn, r>a. (5.5)
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Using the Hankel transform method the integral equations become
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and where d;, [; and k; are the corresponding algebraic cofactors of the multifield compliance matrix

M (4x4) with elements Mﬁ,(i:1,2,3,4,j:2,3,4,5),for j=2, j=3 and j =4, respectively
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Then, if m, =det(M ), the material parameters d;, /; and k; are
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where the sum is from 1 to 4. The coefficients d;, /; and k; are given in the Appendix A by Eqs (A6).
The integral equations become

= | ~U(&) d
[g] @(2) Vo(re)de=| oy +0" (r) |, n<r<a (5.12)
’ ‘P(&) \V0+\|/T(r)
- |U(E)
[C]I&Z D(E) Yy (rE)dE=0, r<ry, r>a (5.13)
oY)

Changing the variable r € <r0,a> on o€ <0, n> by equation

2rbcoso=r’+b° -1, a=r.+b, n=r.—b, (5.14)

and assuming that EU (&), &@(&), Ey(&) can be presented by integral as follows

U] «[F(B)
gl o(&) |=[| F2(B) |7 (eR)dB,
w(&)] | F5(B)

(5.15)
R’ :’2-2 +b’ —2r.bcosf,
we obtain
ZZ(F’O) 0 I(B)
8(R -
D, (r,0) |==[C][| £ (B) %dﬁ. (5.16)
B._(r,0) 0| F3(B)

Here F;(B), F,(B) and F;(B) are arbitrary continuous functions, 8(R—r) is Dirac’s delta
function and the following formula is used

< 3 S(R—r)
[&75(&R)Jy (&r)d = (5.17)

0

Then Eqgs (5.13) are identically satisfied. Introducing the series representations

Fy(B)|=.| b, [cos(nB), (5.18)
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we obtain from Eqs (5.16)

GZZ(I",O) ; - | an
D, (r,0) ——[C]rbsmaz b, |cos(nB). (5.19)
B, (r,O) ¢ =0l ¢,

Substituting Eqgs (5.18) and (5.15) into the boundary conditions (5.12), we obtain

5
al‘l [ee) T
> b, jJO(gr)dngo(E,R)cos(nB)dB= —pp—0" (r) |. (5.20)
n=0| ~ |0 0 T
n Yo~V (’”)

Using the formula (Gradsztejn and Ryzhik, 1965)
[0 (gR)cos(nB)dB =, (&.)J, (£b) = nZ, (&..Eb). (5.21)
0

Then Eq.(5.20) becomes

5
an 0
>\ b, J(,(ar)zn(grc,gb)dgzi —py—¢' (1) | (5.22)
'
e ) ~yo v (r)

Introducing the new coefficients d, and e, instead of b, and f,

, and g, instead of ¢, as follows

a 2Tya’ .
bn = __(Pﬂdn _szen >
T L
(5.23)
a 2Tya® _
Cn :__W()fn - 02 Y&y »
T 1
Eq.(5.22) are converted to five algebraic equations with respect to a,,, d,, e,, f, and g,
0] R
ol o 1
X e |[0(8)2, (2..8b)dE = h(r) |, ny<r<a (5.24)
n=0 fn 0 Ji
& (r)]

where
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2 2
h(r)zln[£+\/a—2—]J—\/]—r—2, r<a. (5.25)
r r a

We conclude that a, =d, = f, and e, = g, . By using Neumann’s formula (Gradsztejn and Ryzhik,
1965)

Jo(&r)=Zy(&r,.Eb)+ 25) Z, (&r..6b)cos(ma), 0<a<m, (5.26)

m=1

and the Fourier expansion for the function A(r)

h(r)=hy+ 22 h,, cos(mo.),

(5.27)
] T
h, = ;.([h(r)cos(moc)doc,
Eqgs.(5.24) are converted to two simultaneous algebraic equations
Z anAmn = 8Om ’
n=0
(5.28)
> ey, =h,,  m=0,12,..
n=0
with the matrix
Amn = J.Jm (EAS] )Jm (EzSZ )Jn (E:SI )Jn (Z‘:SZ) E.n
0
(5.29)
s,azzé(lis), s=%0,

and where 9, is Kronecker’s delta.

From the condition that o_, (#,0) must be finite at » =7, (0. =0) we conclude that the infinite series

in Eqs (5.19) must be zero for a — 0 (r >+ 0) . This gives the condition

©
2Tha( - mg . m

m m

- (5.30)
= 16 b _ s Vo
Ze” mo m O
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The equation gives the relation between the depth of penetration of the punch &, the boundary
electric and magnetic potentials ¢, and y, and the radius of the contact region 7, since the sets g, and e,
depend on 7, . Of course, temperature 7;, appears in this equation.

Finally, we obtain
a) contact stress

o0

L, )
o (r) B z[an(,_&&_m&j_en_oa(ﬁﬂwﬂﬂ, (5.31)

nr.bm, sinol 4= d m & m 7o m m
n=0

b) electric displacement

D, (r,0)=- asm; 1 Zl:an (1_% n; Wy mgj_en 2Tya [ﬁﬂ“?&lls (5.32)

nr.bm, sino = d ms O m; 7o

¢) magnetic induction

B(r0)=-22 L Z{a{l—“’—"m’(’—ﬂm”j—en ”0“[5’"’0+7”’”ﬂ, (533)
0

nr.bm, sinow A= O my O my nd my my

d) displacement on the boundary z =0
u, (r,0)=8> a,I} [2} (5.34)
n=0
e) electric potential on the boundary z =0
e8] " %
(P(V,O)Z—(szanlg [;j> (535)
n=0
f) magnetic potential on the boundary z =0
o0 " r
v(r0)==v, > a,l; (ZJ (5.36)
n=0

where the integrals
I [gj - { Jo(ag}fn (&51)/, (852) . (5.37)

are presented analytically, as well as the matrix 4,,, in Eq.(5.28), by Rogowski (2006).
It can be shown that the gradient of u,(r,0) is bounded for r—>7,+0 and unbounded for

r—>1)—0 and for »r >a+0 tending, to plus or minus infinity, respectively. If in the contact region
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potentials ¢, and y, appear the gradient of u_ (r,O) tends to minus infinity at the left neighborhood of the

contact circle » =7, . This phenomenon occurs, among others, in adhesive contact problem.
The equilibrium of the punch yields

P=2na6ﬂ[ao(1—ﬂﬁ— 7 m] ZToa( pm_ym_ﬂ (5.38)

m, d m & m o m m

The coefficients 4, are calculated from the formulae

2
hm:%(280m+8,m) for h(r)=1-"5,
a a
hm(o)zé(zsom +8,,) for =0, (5.39)
1 p 2 2 r
h,, =—I(a—\/a +b —Zercosoc)cos(moc)doc for h(r)=1-—.
na -, a
The solution of the infinite systems of algebraic Eqs (5.28) for 7, =0 is
4 1
a, =— 2 9
(5.40)
oo 4 ( 16 j
"om(1+8,))\ 4’ -1 40’ -9
where 0, is Kronecker’s delta.
Equations (5.38) and (5.40) yield
m Qo ms Yot 2Tpa( . ms i
P=4¢—|1-———-——F—-———"—| p—+7— ||, (5.41)
m, Odm & m 30 m m

which is the solution of the problem (“theoretically”) of full contact.

Note that the solution (an,en) depends on the ratio of contact radii 7/a and the inner radius 7, is
unknown. Notice that for an annular contact region the solution (an,en) of the simultaneous algebraic
equations satisfies the inequalities
"o

, s=—L. (5.42)
a

a, e (s—)])|£

n>-n

a,.e, (s)| <la,.e, (0)

The piezoelectric response amplitude mg/m and piezomagnetic response amplitude 7i; /m for real
materials are negative. This proves that increasing the applied electric and / or magnetic potentials will
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always reduce the indentation depth &. Similarly, if 7;,p and / or T,y are positive the indentation depth & is

smaller than that for isothermal problem. For negative 7),p and / or 7,y the thermal generalized

displacement ¢’ and y’ change the sign and & increases.
The piezoelectric and piezomagnetic response amplitudes are defined as follows

ReRp=| _mg H
6(p0 P=const m V

Y =const
(5.43)
Pk =| B _ g m
a\l/g P=const m A
pp=const
For BaTiO; — CoFe,0, commercial composite we have
PeR =-2.14x10°m/V,  PmR =-7.7x10"m/A.
The indentation elastic stiffness coefficient
PL_m (5.44)
4a6 m,

assumes the values of 62.5GPa for the multifield composite BaTiO; — CoFe,O4 and 70.4GPa for a pure
elastic transversely isotropic material with parameters ¢;; only for this composite.

The indentation piezoelectric coefficient is

M 143 (5.45)

= = —70%x10°—, (5.46)

for this multifield material.
The total concentrated electric charge O and total magnetic flux B in the contact region are

obtained by integrating D, and B, over the circle of contact. We obtain

0= 2nas™s ao[l_&ﬁ_ﬁﬂj_eo 2Toa[pﬁ+7&ﬂ,

my | d ms O m;s T ms  ms

(5.47)

B=2nas™ a, 1_(P0 My  Wo My _602T0a ﬁm10+?m11 '
my | d mg O my nd my my
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The coupling terms my, mg, mg (or ms, mg, my,), which are the elements of the matrix on the

right hand side of Eq.(5.8) are non — zero for multifield materials. This suggests that even in the absence of
an applied electric and / or magnetic potentials, an electric and magnetic charge could be accumulated on the
surface due to the applied mechanical load or displacement.

Similarly, an applied electric potential and / or magnetic potential could cause mechanical pressure at
the contact region. Solving Eqs (5.38) and (5.47) with respect to 8, ¢, and y,, we obtain the corresponding

generalized compliance relations.
Defining the stress, electric displacement and magnetic induction intensity factors as follows

[KoKp.K5]" = lim \2(a=r)[o.(r,0),D,(r,0),B,(r,0)] (5.48)

we obtain
T 1
K _ K K =——|P,0,B]. 5.49
[Ks.Kp.Kp] 2na’_a[Q] (5.49)

6. Single phase materials and multifield composite materials

Use the notation
N 2 B 2 2 B 2
e;=(e3 +e5)hi, ey=ez tephi, c=c+eph, € =8 —833M (6.1)

and define the matrix and its inverse

e & 0 ] € 0 —&;
Cp=|0 0 —of, Cil=————| = 0 ¢ | (6.2)
ee; —cg;
c e 0 0 0 0

Of course, C,C}' is the square unit matrix.

Similarly,
_ 2 _ 2 _ 2 _ 2
q; = (431 + 4115)7‘1' s 42 =4q3+q33hi, c=cpteh, By =Ry Uk (6.3)
0 - 0 ; 0 9 -
Cyu=lg, 0 w|  Cil=—"—0 0 o0 | (6.4)
919> — Yy
c 0 q 0 — q

Thus, we obtain

{ali }E 1 {ez —s,} e3sh] —egs + p3dgghidig 6.5)

= 2 -2
asz; 61e2—081 —C €; 6337\,1- +C13—(B3 +B]7\‘i )a()o?\aiéi()
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{ah}H i {qz —ul} 33hi = qps + Y3800 6.6)

ay; q:9; —cuy | =¢ 4 0337%'2 +¢p3— (53 + Blki_z)aookism

1

respectively, for piezoelectric and piezomagnetic thermoelastic materials.
Note that for a piezoelectric material a,; =0, but aj; define the coefficients a;;, that is also the

magnetic induction B,, by the electromagnetic constant d;;. Similarly, for the piezomagnetic material

where a;; =0, a,; define ag;, that is also D,, as a consequence of the electromagnetic effect (see Eqs
(2.7)).

For a composite two — phase (E + H) multifield material the compliance matrix may be defined
as

Cil = é(cg’ +Ci ). (6.7)

The constitutive stiffness matrix for the composite will be the inversion of this compliance matrix.
The solution presented here may be used for composite materials made of multifield materials.

7. Conclusions

The potential harmonic theory method has been generalized in this paper to analyze the thermal
Green’s functions for a multifield material. Green’s functions are used to analyze the contact problem of a
heated and conducting punch indenting a multifield half — space. The boundary value problem is converted
to triple integral equations, which are reduced to simultaneous two infinite systems of algebraic equations. In
the limiting case of full contact, which theoretically may occur, the closed form of solution is obtained. The
expressions for displacements, stresses, electric and magnetic potentials and electric displacement, and
magnetic fluxes are presented in terms of infinite series. Some important relationships between the applied or
accompanied loads and indentation depth, constant electric potential and magnetic potential are established.
It is worth mentioning here again that the general solution shall take another form for equal eigenvalues
cases. However, one can also derive the corresponding results of equal eigenvalues directly from the ones of
distinct eigenvalues, by utilizing the well known 1’Hospital rule.

In the light of the analytical analysis the following conclusions can be formulated.

1. Increasing the applied electric and / or magnetic potentials will always reduce the indentation depth of
the punch.

2. The indentation electric stiffness for the representative multifield material BaTiO, — CoFe,0; is smaller
than that for a pure elastic transversely isotropic material.

3. The hypothesis of the constant electric and magnetic potential in the contact region is equivalent to a
centrally applied concentrated charge Q and magnetic induction B, which can be obtained by
integrating electric displacement and / or magnetic flux over the annular contact region.

4. It can be seen from the obtained formulae that the complete solution can be separated into three parts:
the first part corresponds to the normal displacement &, the second to the electric potential ¢, and the

third to the magnetic potential .

5. If the contact region electric and magnetic potentials occur (conducting punch), then the
phenomenon similar to adhesive contact occurs in the left neighborhood of the inner radius of the
contact region.
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Nomenclature

a —outer radius of the contact region or radius of the heated circular field
B — magnetic flux applied to the punch
B,., B, —magnetic inductions
C - indentation stiffness matrix
D - electric charge applied to the punch

D,,D, - electric displacements

d — electromagnetic constants
E — electric field
e — piezoelectric constants
q — piezomagnetic constants
H — magnetic field
J,, — Bessel function of the first kind of order m

K, Kg, Ky —stress, electric displacements, magnetic induction intensity factors, respectively

m

P — force applied to the punch

O —heat flux or electric charge applied to the punch
rp — inner radius of the contact region
T —temperature

u,,u, —components of displacement
z —vertical coordinate
8 —indentation depth
¢ —dielectric constants
¢,m - the oblate spheroidal coordinate system

A
p  —magnetic constants
¢ — Hankel parameter
o — stress tensor
¢ - electric potential

o, — electric potential on the contact surface

— eigenvalues of multifield material

y — magnetic potential
vy, — magnetic potential on the contact surface

Other symbols are defined in the text of the paper.
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From author

The Curie brothers discovered the piezoelectric effect in 1880 (Cady W. G., Piezoelectricity, New
York, McGraw — Hill, 1964). Today, over a 100 piezoelectric materials or composites are known (Pohanka
R. C., Smith P. L., Recent advances in piezoelectric ceramics, In: Levinson M. L., editor, Electronic
ceramics, New York: Marcel Dekker, 1988).

The electro — mechanical, magneto — mechanical, electro — magnetic coupling of those materials,
which I name “multifield materials”, has an immense technological potential in designing “smart”
materials and structures ranging from huge aerospace structures to miniaturized medical devices and
miniatural medical apparatures. Multifield materials have been widely used for applications such as sensors,
filters, ultrasonic generators and actuators, magnetic field probes, acoustic and ultrasonic devices,
hydrophones. Also these materials have been employed as integrated active structural elements. These
structures are capable of monitoring and adapting to their environment providing a “smart”, response to the
external conditions. Interested readers may refer to a state of the art survey by Rao S. S., Sunar M.,
Piezoelectricity and its use in disturbance sensing and control of flexible structures.: a survey, Appl. Mech.
Rev., 1994, 47, 113 — 123. One of the practical examples of a piezoelectric device is a piezoelectric
accelerometer for triggering the onset of an airbag in tens of thousandths of a second during the accident.
The advanced micro — electro — mechanical systems use piezoelectric materials in the latest technologies of
smart / intelligent designs featuring miniaturization.

The physical law for piezoelectric materials has been explored by Nowacki W., in 1°Some general
theorems in thermo — piezoelectricity, J. Therm., Stresses, 1978, 1, 171 — 182, 2° Foundations of linear
piezoelectricity. In: Parkus H, editor, Electromagnetic interaction in elastic solids. Wien, Springer, 1979, 3°
Mathematical models of phenomenological piezoelectricity. New problems in mechanics continua, Waterloo,
Ontario: University of Waterloo Press, 1983, pp. 29 — 39.

Applications today: important roles in the design and health monitoring of ship and marine
structures by establishing plentiful styles of devices such as sensors, actuators and power supplies with the
responsibility of electro — magneto — mechanical energy conversion. Other fields of applications include:
microwave electronics, optoelectronics, electronic instrumentation and scanning probe microscopy
technique.

Due to exceptional functions of multifield materials such as flat frequency response and
transformation of energy from one form to the other (mechanical, electric, magnetic or thermal energy) this
type of composite exhibiting piezoelectric and piezomagnetic properties has found increasing applications in
the following branches: aerospace, automotive, industries and submarines.

Nowadays, multifield composite materials have a wide range of applications in engineering science
such as space planes, supersonic, air planes, rockets, missiles, fusion reactions and submarines.

This paper concerns some problems of mechanics of multifield materials. The results are new in the
world science. I addresses it on the occasion of the 60™ anniversary of my Department and 50 — years of my
educational and research work.
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Quo vadis mechanics?
BIMIMETING IN MATERIALS ENGINEERING

People observed and investigated products of nature to use its constructions in technology.
“Bimimeting is about separating from nature good projects. It presents the way from biology to the nature”,
J. F. V. Vincent, Bimimeting modeling, Phil. Trans., R., Soc., London B, 358 (2003), 1597.

BIMIMETING

TECHNICAL SOCIAL

SCIEI|\ICES SCIENCES
ARCHITECTURE MATERIAL
and BUILDING SCIENCE MANAGEMENT MARKETING

MATERIALS CONSTRUCTION PROCESSES
SOLUTIONS
DESIGN

Fig.1. Bimimeting in dissimilar domains and disciplines of science (Konopka K., Wzorce z natury w
technice i inzynierii materiatlowej (Models from the nature in technology and material engineering),

Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2011).

MEANDERS OF MULTIFIELD MATERIALS

BROTHERS CURIE (1880)
PIEZOELECTRICITY

HERMANN von HELMHOLTZ
JOHN WILLIAM STRUTT
WILLIAM THOMPSON
PIEZOMAGNECITY

Piezo in Greek

denotes the stress.

Stress (strain) induces electric Strain (stress) induces magnetic

field (or inversely) field (or inversely)

Def: Piezoelectricity is an electro — mechanical phenomenon, which couples elasticity and electricity
through the existence of pressure induced electrical field or electric induced stress field.
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LORD RAYLEIGH (STRUTT) PARTON NOWACKI W.
LORD KELVIN (THOMPSON) KUDRAVTSEV THERMOELASTICITY
today TRUESDELL, NOLL TRUESDELL, NOLL
ELECTROELATICITY PIEZO—ELECTRO—MAGNETO
MAGNETOELASTICITY ELASTICITY
Truesdell, The main unsolved
problems in finite elasticity NOWACKI W. NOWACKI W.
theory, ZAMA 36, 1956, 97-103 Three paper 32-37 COUPLED
Trusedell, Noll, The non—linear years ago THERMOELASTICITY
field theories of mechanics, ELECTRO—MAGNETO—-THERMO
Springer, Third edition, SS Antman ELASTICITY

(editor), 2004

COUPLED

THERMOELASTICITY
of MULTIFIELD MATERIALS

EXIST?

Thermoelasticity — If temperature of the body increases (decreases) the displacements change and the

Stresses occur.

Does inverse phenomenon exist?

W. Nowacki published some papers on coupled thermoelasticity. Other scientists in experiments did
not accept this theory. I think that such materials exist in nature, so the change of displacement, electric and
magnetic fields changes the temperature of the body. Does inverse coupled thermomagnetoelectroelasticity
exist or not? The answer is as follows: It does in theory, but materials in nature have not been discovered

yet.

Appendix A. The material coefficients for mulifield materials

A1l. The material parameters in the characteristic Eq.(2.6) are as follows

2 2
a=cy [u33e33 +€33q33 + 331033833 —d 33 (033d33 +2e33933 )] >

2
b=p;; {(‘331 +eérs )[2013333 —c35(e5 +eys )] +2c, e33e31 —Cp1€33 = 033044811} +

TE33 {(‘]31 +4s )[2013433 —c33 (g5 +aus )] + 244033931 — 11955 — C33¢44M11} +

—M3383352 - (631 tes )2 %23 - (%1 +4q;s5 )2 953 - c44u”e§3 - 0448119323 +
+2e33q53 (6131 +q;s )(931 +es ) + d32352 +2¢33d 33 (931 tes )(6131 +4qs ) +

+2¢yyC33d ) d 35 + 2e33q55 (Cagdyy +pydss) = 2d55(cp5 + gy )[933 (931 +a15) +as5(es; +e;s )],
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_ 2 ~2
€ =33 {2915 [erress =z (esr Ters) | +egpes; e, } +
+83312 —c13(qs1+aps) |+ w08+

€33144915| €11933 —€13\431 T 415 Cyq937 T U €
+C33C 1 €11 T Cp Chqlh33833 T 2(013 +Cyy )(‘]31 +4;5 )(d11633 +dzsers —q33€) ) +
+2(013 +Cyy )(631 +és )(d11‘I33 +d;33q;5 — 331y ) +

2 2

+(¢131 + 415) (633811 +2ez3¢;5 ) + (‘331 + €15) (633H11 +29339;5 ) +
—2((]31 +4s )(631 +es )(6336115 +q33€;5 +C33d 1 +Cyyds; ) +
—2¢;,d3; (6336]15 +4q33¢;5 ) —2cyydy; (‘]33615 + 3395 ) +

=2¢11d11933€33 — 2C44d33q ;5815 + 2C44q75933€ 11 T 2C4q€) 583317 +

2 2 ~2 2 2
+C11q33€8 ¢ p€330 ) — 26 d33d  — ¢ Chyds3 — CqyC33d s

_ 2 2 2 2
d=—cjlsz; (044811 tes ) —C1833 (044H11 +475 ) —Cyy (931H11 +4q3/€; ) +
2 2 2 2 2 -2
—€3,q7s —q31€15 — My €1,C +d €7+ 2¢ cyd ) d sz +
+2¢13915931€11 +2¢13€ 5831111 — 2€11915933€ 1 — 2C11€15€331 1 +
2 2
+2¢13q75€1; +2¢ 3€1s51y +2€3,€15G319,5 +2¢; €159, 5d 33 +

+dy; [_2013615 (915 +q31) = 2¢134915 (e15 + €3 ):I +dy [2011 (er5933 +qs5€33) + 2044%1‘]31}
2 2
e=cyy [Hueu +811q75 + CagBrbty —dp (Cppdyy +2¢154;5 )] )

€ =CyC33 —Cy3 (CJ3 +2¢yy ) .

A2. The parameters a;, b;, c¢;, d; (define ay;), and a,, b,, ¢,, d, in Eq.(2.7) are

2 2 2
a; =B, [633 (833H33 —d3; ) + 133633 +€33953 — 2€33d33933 } +

Ci3+Cy )(d33e33 —q33833 ) + (931 tes )(d33033 +q33€33 ) - (%1 +4q;s )(033833 + 653 )J

+B; [ Ci3tCyy )(833H33 - d323 ) - (331 +es )(H33e33 —d;33933 ) - (6131 +q;s )(%3833 —d;se33 )} +

+P;3 [_(013 + 0 )(d33933 —e33m33) + (937 + 55 ) (ds333 + g33e33) — (€3, +eg5 )(‘333“33 + 953 ) )
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b; =B, [033 (2d;d53 — 33017 —H33811) +C (d323 - 833“33) —€11q35 — M1€55 +

+2d35(e539;5 +q33€5 ) +2d ;133933 — 29533833 — 2915%3“33] +

+B; [‘(013 +Cyy )(Zdudss —€33M7 = H33811) + (6]13 +4;s )(6]15833 +q338;5 —djje33 —dszeps ) +
+(e5; +ep5 ) (ershss +essiy —dyqss —dpq;s )] +

+73 [(‘713 TCyy )(d11633 +dssers —qr5833 —q33811) — (€31 +eys )(044d33 +e33dp; +qrsess +ep5qss)+
+(q31+ 415 ) (Cagtss + 338, + 2¢55€35 )] +

tP3 |:(CI3 + 40 )(d11453 + 3375 = ershss —esstyy) = (a1 + 15 ) (Caadlss + €331, + qp5es3 +€p5d33) +

+(e5; +es5 )(%4“33 +C330y7 24,5933 )]’

c; =P, [044 (e11M33 +E330; = 2d;d33) + ¢35 (811M11 ~d} ) + 633975 + Mys€ls +

—2d,;(e15933 +q15€33) + 245933811 + 2“11615633] +

+B3 [(013 tCyy )(d121 —E€1 My ) —(es7 +eps)(mirers —dpars )= (a5 +a5)(€11915 = dysers )} +
V3 [(013 +cqg )(arserr —ersdir) +(esr +ers ) (dypcyy + qrsers) = (asr +ass )(044811 *ters )J

+
+p3 [(013 + 044)(915M11 —q;5d;; ) + (6131 + 415)(d11044 +4q;5¢;s ) - (931 + 615 C44H11 + ‘]15 J
d;=-$, [044 (811H11 - d121 ) + H11€125 + 811‘1125 - 2615415“’11} >
ay; =Cyy [Bs (833H33 - d323 ) +7;3 (dssess +4q33833 ) + p3 (d336133 —€33M33 )J )

b, =B, [(013 T Cy )(833H33 —d3s ) — (€37 +e15 ) (335 —Hasess) — (a1 + 15 ) (dssess — €333 )] +
—B;3 [Cu (833H33 + d323) gy (MB35 + M33811) = 2(q31 +aps )(esy +eg5 ) dss +

+(g31+ 455 )2 £33 + (e +eys )2 H33J +

Y3 [011 (dsses3 = 35855 ) + Caq (dygess +dszers —q5855 = q33811) = (c15 +cqq ) dss (€57 +€g5) +
—q33(e5; +e;5 )2 +e35 (931 + 15 )(c13 +c4g) +e33(d31 + a15) (€31 + e )] +

—P3 [011 (d33q55 —e53133) + € (d)1q35 + d33q15 —epshzs —essiyy ) —(cp5 + ey )dss (a5 +q15) +

—e33 (‘]31 +q;s )2 Rl X} (931 tes )(‘313 + 044) +433 (1131 +q;s )(631 t+es )J
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c; =Py [—(013 +qq) (811133 +E330pp ) + €3y +ep5)(dypgss +ds3qp5) + (a3, + 15 )(dess + dszeps ) +
_(931 + 915)(5115833 + 933811)_(‘331 + 615)(615H33 +633H11)+2(013 +C44)d11d33] +

+B3 [044(811H11 +“’121)+C11 (k833 + M3 )+ 1y (es) +egs )2 +e17(q31 + 95 )2 +
~2(e5; +ep5) (g3 +qs5)dyy |+

—v3 [c44 (ar5811—ersdyy)+(ess +e5)((crs +caq)dyy + (31 +ep5)qr5) +

—(g3; +915)((013 tcy)er +(es +eps)es ) crr(dyess +epsdss —€11q53 —833‘115”

—P3 [044 (erskyy—qrsdip)+ (a5 + s ((‘713 +egy)dy+ (g3 + Q15)‘315)+

_(331 + ‘315)((013 +Cy )Hu + (%1 +4;s )415) €11 (d11‘133 +q;5d33 — €33 —H33€;5 )]»

d; =P, [(013 +cyq)erby —(esr+ers)diars — (a5 +ais )drers (a3 + a5 ) a5 +
+(e5r +egs)uprers —(cp5 ey )deJ —B; [011 (SUHU ~dj, )} e [011 (ersdir—aisen )] +

—P3 [011 (915d;; —915H11)}

A3. The parameters a;; and a,; in Eqgs (2.1) are defined alternatively to those defined by Eqs (2.7) by

parameter a;; as follows

as, =[{Bz [(esr+ess)asshd = ais) ~(eis + eas)(dys = dsshd ) |+
B3] (e +15) (a3 + a5 ) + (cashd sy ) iy —dspd ) |+
23 M (s + ) (451 + 5) + (0 =) (4357 —quﬂ}ahxi ¥
| (c50? —cga ) (i = dash? ) = (a3 = s )(es2d = eis) |+
Bt | (1 + s )iy = dsshd )= (s + ass) eah? —ess) |+
+pita (ers +ss)( a3 = a1s) = (@31 + s (633kf—c44)ﬂx
x{ Pt (e +ers) (93527 —a15) ~ (a3 +q]5)(e33k —ei5) |+
By [ (e33h —ers ) (s = dish? )= (0507 = 1s ) (11 2327 ) |+

o

+B3h; [(631 +ers )(du - d337w2 ) - (6131 +4;s )(811 €33M; )J}
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ay; = —[{[31 [(931 teys )(9337%2 —es ) (13 +cqy )(811 ~e331] )J +
_(631 *ers )2 A+ (0447‘1‘2 ¢ )(811 —e551] )_ +

+P3 [7%' (crs+ep)(ess +es)+ (0447“2 ~Ci )(3337%2 ~es ):|}a1i7“i +

+
=
[oY

+B; (0337%2_044)(511 8337‘) (e33k 915) +

+B3ki[(c13+c44 (s” €33\ ) e3+es) e33k e,5ﬂ
+p3ki[(c13+c44 (e33x e,5) ez +e;s) c33x c44)ﬂx
x{p3hi [(eﬂ +e,5)(q33li —q15) (g3, +a;5) 6337L e15)]+
+fy | (e —ess)(dis = )= (03507 = s )(e21 — 23527 ) | +
-1

+B3h; [(‘331 ters )(dll - d337w2)—(6131 ;s )(811 e33h; )J}

A4. The roots of characteristic Eq.(2.6) are presented by formulae

R
xf:-i—i,/Rj Ré—é\/z& R6+i—7,

4a 2 4 \JRs + Ry

7»5 =—4i—— Rs + Ry +
a

&

,/R5 +R6

4a R; +R6

&

4,/R5+R6

R
x§=—i+5 R5+R6——\/2R5 Rg — L&

where
R, =2¢% —9bed + 27ad? + 27b%e - 72ace; R, =c? —3bd + 12ae,
Ry =+/R] —4R3; R4=3é(R1+R3),
b’ 2c R, R, b’ 4bc 8d
5T, 73,0 Rs =+ = 7T T T T
4a° 3a 3aR, 3a a a a
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AS. The material parameters in Eqs (3.12) are as follows

A6. The material parameters d;, /;, and k; in Eqs (5.8) and (5.11); i =

* ay a
_ 44953
d; =as; —k -
3
* ay3954
d;=a; —7» -
4
* ay a
_ 44952
d; =a;z —k -
2
* 42453
dy=az | ———>-
s

* 4 *
m, = Zaﬁd[ .
i=1

a43d54

Ay

44953

A

ay20s54

Ay

43957

Aa

+ a33

+ a33

+ a32

+ a32

Q42954 _

Ay

Q4451 _

Ay

Ga1%5q

Ay

a43451

A

44957 ] +ay, [043052
A, A,
ay1954 j ta (941"53
- 78
Ay A3
a44“51J +a, [942‘151
— 4|
Y 9
a4za53J ta (%1“52
- 33—
s As

42053 j

4345

)
a41a52j
)

4045

1,2, 3,4, are as follows

d;=as, (033044 —ay3a3y ) +as; (034042 —dazyAyy ) +asy (“32“43 —daszzdy; ) )

d;=a;s (a34a43 —a33ayy ) +as; (a31a44 — a3y ) t+asy (%3"41 - a31a43) )

d; =as, (032‘144 —daszay ) +as; (%4“41 —az Ay ) +asy (031"42 —dszyay; ) )

dy=as; (“33“42 —dzpays ) t+as; (%1“43 —dasz3dy; ) +as; (%2“41 —dazdy ) >

Iy =asy(ay; —ay)+ass(ay —apn)+as,(a;,—az;),

L =as)(agy —ag3)+ass(ay —ag)+as (a3 —ay),

Iy =as) (g —ag)+asy(ay —ay)+asy(ag —ay),

ly=as)(az3—az)+asy(ay —ag)+ass(an —ay),

k; =as, (a34 —das;3 ) +as; (asz —dszy ) +asy (033 —ds; ) )

ky =as, (033 —dzy ) +as; (034 —daz; ) +asy (“31 - 033) >

ks =as, (‘134 —az,)+as, (031 —azy)+asy(as; —az),

ky =as, (032 —a33)+a52 (033 —a31)+a53 (a3, —032)-
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A7. The parameters in Eqs (4.6) have the following matrix forms

as; ass asy asg ass asy
di=—|agh; aghs aghy |, dy=|agh; agh; aghy |,
aph; aph;  azhy azh;  azh;  azghy
asg asy asy asg as; as3
d;=—|agh; agh, aghy|, dy=|agh; agh, agh;|,
a;h;  aph, azhy a;h;  aph,  azzh;
ds; ass Asy ds; ds3 dsy
7 ds; ds3 asy 7 o_ ds; ds3 dsq
L= == == =, b= = ==
A A3 Ay A A3 Ay
_a727¥2 azzhs  azghy a;h;  az;h;  azhy
asg as; asy asg asy ass
i = asg asy asy j= asg asy ass
3 > 4 — )
Iy Ay Ay g A, A3
_a717“1 azph;  dzghy a;h; azph;  azh;
as; ass sy asp asz dsy
7o as) as3 sy 7 asg as3 dsy
k; = —2< —2 == |, k, —=L 22 =%,
A, As Ay Y A3 Ay
_%27“2 agzhs  agshy agih;  agsh;  agghy
asg as; asy asg asy assz
ro_ asg asy asy | 45 asy as3
S e vl B T
1 2 4 )i 2 3
L agih; aghy  agghy agih;  aghy  agzh;

AS8. The following integrals are used

d

E[d_é(%je_%z']o (rE)de =—an; {1 =G [g
(4 singa) g A L
v([dé( : je J](ri)di— 2(2 tan " g
| édié(%j e i, (rE)d = —§+ tan~' ¢, +

—tan”’ Ci H .

G
1+¢7

Gi

2 b

G +m;
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where

[ed (singa) o _r n,
{éda[ 3 je /i(re)dt a(1+¢7)(c?+n?)

I—Sizf“a e_‘i)‘fZJo (r&)dé = —Eln j 2’ +am; {] ¢; (—— tan~’ ¢; H
0 1

[sin&a —hiz g gdazﬁg I-n; +£[E—tan_1g—i}
;[ e 1(r€) p ((1=m;) 2l 2 <

1

S
2]
Ly
=
Jre
Q
\
o
>
N
iy
~N
Je
v
m
/\
|
3
N

Ci(r.za,h;) = = o2 \/\/r +07z? —a2)2+47u,~222a2 (r +07z? —az),
2a

n (r,z,a,h;)= N \/\/r +k222—a2) +4072%d? (r2+7»,-222—a2)
2a

and 2; are the roots of Eq.(2.6) with positive real parts.

Note that the improper integrals (A.8) are new analytical results obtained by the author in his

textbooks. In addition, the improper integrals (A.8)s and (A.8)s are not presented earlier. The integrals (A.8)
are useful in other problems of mechanics, which may be solved with the use of the integral Hankel
transformation and integral equation technique method.
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